A comparison of modified Howland circuits as current generators with current mirror type circuits.
نویسندگان
چکیده
Multi-frequency electrical impedance tomography (EIT) systems require stable voltage controlled current generators that will work over a wide frequency range and with a large variation in load impedance. In this paper we compare the performance of two commonly used designs: the first is a modified Howland circuit whilst the second is based on a current mirror. The output current and the output impedance of both circuits were determined through PSPICE simulation and through measurement. Both circuits were stable over the frequency ranges 1 kHz to 1 MHz. The maximum variation of output current with frequency for the modified Howland circuit was 2.0% and for the circuit based on a current mirror 1.6%. The output impedance for both circuits was greater than 100 kohms for frequencies up to 100 kHz. However, neither circuit achieved this output impedance at 1 MHz. Comparing the results from the two circuits suggests that there is little to choose between them in terms of a practical implementation.
منابع مشابه
Design of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملPower Supply and Current Modulation Circuits for Semiconductor Lasers
Design and construction of a stable current supply with protection circuits are described. The reported circuit provides a high-stable and high-level current variable from 0.5-1.2 A with the protect ion circuits to prevent over load current, voltage and off-range temperature operation. A detailed analysis of the circuit parameters is given and the time behaviors of the load voltage/current and ...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملEfficient Analysis of Plasmonic circuits using Differential Global Surface Impedance (DGSI) Model
Differential global surface impedance (DGSI) model, a rigorous approach, has been applied to the analysis of three dimensional plasmonic circuits. This model gives a global relation between the tangential electric field and the equivalent surface electric current on the boundary of an object. This approach helps one bring the unknowns to the boundary surface of an object and so avoid volumetric...
متن کاملRealization of Novel Cascadable Current-Mode All-pass Sections
This paper introduces four new resistorless circuits of first-order current-mode all-pass filter (CMAPF) based on dual-X current conveyor transconductance amplifier (DXCCTA). All the four circuits use a single DXCCTA and a capacitor for their realization. The main features of the proposed CMAPFs are: use of minimum active and passive components, resistorless realization, electronically adjustab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological measurement
دوره 21 1 شماره
صفحات -
تاریخ انتشار 2000